Introduction

We present a multi-phase approach to estimate and evaluate the requirement of the number of vehicles for an automated material handling system (AMHS) in a semiconductor manufacturing environment, where the monorail network is fixed and unidirectional, and with a certain number of workstations as demand nodes. The proposed approach deploys a mathematical model to obtain the most optimistic estimation. We subsequently experiment on balancing of the network flow and conducting cost analysis to recommend the practical estimation and the corresponding system performance. This approach provides a less complex method for manufacturers to evaluate the utilization of transportation resource of AMHS.

Study Subject: AMHS (Automated Material Handling System)

ystem Components

Network Structure: Two incompatible networks, connected by a bridge track and kers
Arcs: fixed unidirectional monorails.
Demand Nodes: 51 stockers in network 1; 20 stockers in network 2. Each stocker is associated with a workstation and represents a certain amount of demand within a certain time period

Challenges:

- Supply of the vehicles is limited
- Adding a new vehicle is costly.

Vehicle idle time is not identified
Objectives:
Find the optimal number of vehicles that meets the system demand at the same time dose not excess the budget
Identify the flow unbalance.

Approach

PHASE I Mathematical Model
1 Calculate the net flow of stocker i, denoted by $N F(i): \quad N F(i)=\sum_{k} v_{k i}-\sum_{j} v_{i j}$ where $v_{i j}$ is the number of loaded vehicle trips that must be sent from stock i to stock j 2 Linear programing formulation:

Minimize $\quad \sum_{i} \sum_{j} t_{i j} x_{i j}$ (1) Minimize the total travel time of empty vehicles Subject to $\sum_{j} x_{i j}=a_{i}, \forall i \quad$ (2) \# of empty vehicles in = \# of loaded vehicles out. $-\sum_{k} x_{k i}=b_{i}, \forall i \quad$ (3) \# of empty vehicles out $=\#$ of loaded vehicles in. $a_{i}=\left\{\begin{array}{c}N F(i), \text { if } N F(i) \geq 0 \\ 0, \text { otherwise }\end{array} \quad b_{i}=\left\{\begin{array}{c}N F(i), \text { if } N F(i)<0 \\ 0, \text { otherwise }\end{array}\right.\right.$
$x_{i j}$: Decision variable, the number of empty vehicles sent from stocker i to stocker j. $t_{i j}$: The shortest on-track time from stocker i to stocker j.

3 Calculate the lower bound and upper bound of the number of vehicles, N

$$
H_{L B}=\sum_{i} \sum_{j} t_{i j} u_{i j}+\sum_{i} \sum_{j} t_{i j} x_{i j} \quad H_{U B}=\sum_{i} \sum_{j} t_{i j} w_{i j}+\sum_{i} \sum_{j} t_{i j} x_{i j}
$$

$t_{i j}$: Total time needed from stocker i to stocker j, including load and unload time. $H_{L B}$: Lower bound of total vehicle travel time, $u_{i j}=\operatorname{ROUND}\left(v_{i j}\right)$.
$H_{U B}$: Upper bound of total vehicle travel time, $w_{i j}=\operatorname{ROUNDUP}\left(v_{i j}\right)$
h : Available hours per vehicle per shift.

$N \in\left[\left\lceil\frac{H_{L B}}{h}\right\rceil,\left[\frac{H_{U B}}{h}\right\rceil\right]$		
	N_LB	N_UB
Network 1	40	52
Network 2	17	18
Total	57	70

Overall Output of Phase

Number of empty vehicles assigned between each pair of stockers Total empty travel time Daily availability per vehicle
Daily total loaded travel time Lower bound and upper bound of the number of vehicles needed Vehicle utilization

PHASE II Identify Flow Unbalance

3 types of unbalance

- Flow unbalance within the network
- Flow unbalance Flow unbalance
crossing network arossing network
and network 2
entering and
leaving the system

PHASE III Flow Balancing and Performance Test flow balancing under 7 scenarios and choose the one that has ideal performance.

PHASE IV Cost Analysis and Optimal Number \qquad

* As add more vehicles in th system, the waiting cost of lots to be shipped decreases while the fixed cost grows.
- The optimal number of vehicles leads to the minimum total cost

References

[1] C. Huang and C. L. Borst, "Estimation of number of PGV for a 450 mm fab: FA: Factory automation," (2016) 27th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), Saratoga Springs, NY, 2016, pp. 164-167, OI: 10.1109/ASMC. 2016.7491117. 2. W.L. Maxwell \& \& A. A. Muckstadt (1988)
24, DOI: 10.1080/05695558208975046

