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Background: 
Substructure analysis reduces the computational cost associated with predicting the 
response of a body by eliminating non-essential degrees of freedom (DOF) [1]. 

Notional depiction of substructure analysis, in which a meshed structure is 
reduced from 82 degrees of freedom to a 6 degree of freedom substructure.

Objective:
Leveraging the mathematical framework developed for constitutive plasticity, develop 
a scheme to account for general nonlinear structural responses of arbitrary order [2].

Framework components:
• Deformation decomposition (defined by the known linear substructure solution)
• Nonlinear initiation criteria
• Evolution equations that govern how internal state variables evolve
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The mathematics of constitutive plasticity can capture a wide range of general 
nonlinear responses, including material yield, hyperelasticity, and large deformations.

Example: Lattice truss with nonlinear smooth hardening constitutive nonlinearity
The nonlinear substructure workflow of reduction, training, and calibration is accomplished via 
generation of high-fidelity FEA data and subsequent calibration performed via optimization.

Conclusions:
• The mathematics developed for constitutive plasticity can be extended to apply 

to higher-dimensional structural bodies.
• General nonlinear responses involving complex structures can be predicted by 

the aforementioned framework at a fraction of the computational cost of 
traditional FEA.

Future work:
• Integrate the nonlinear substructure process to predict the response of multiple 

unit cells assembled together.
• Perform multiscale optimization considering heterogeneous configurations and 

multiple different types of unit cell geometries.

Step 1: Reduction and substructure model formulation
Deformation decomposition

Evolution equations

Nonlinear initiation function

Agreement between 
substructure prediction 
and training data for a 
selected load case.

Calibration error metrics:
Training Error: 166.5
Testing Error: 159.4

Full-fidelity FEA: ~50K elements Substructure FEA: 9 elements
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Step 2: Generation of training and testing data via Latin Hypercube Sampling

Equivalent plastic strain contours of
the training and testing load cases
in high-fidelity FEA. Time histories
of force-displacement (or moment-
rotation) pairs for all retained
degrees of freedom are recorded. In
this example, 10 load cases are
used for training and testing.
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Comparison between traditional full-fidelity FEA and the substructure analog for a 
3-by-3 array of lattice structures. Substructures could provide immense speedup 
by only requiring 9 functional evaluations per loading increment, compared to the 
50,000 functional evaluations required in traditional FEA. 
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Step 3: Substructure calibration via hybrid optimization


