AEROSPACE ENGINEERING

TEXAS A&M UNIVERSITY

Nonlinear substructure methods to efficiently predict mechanical responses

Patrick Walgren and Dr. Darren Hartl
Department of Aerospace Engineering, Texas A&M University

MAESTRO AFRI

Laboratory

Background: Example: Lattice truss with nonlinear smooth hardening constitutive nonlinearity Conclusions:

Substructure analysis reduces the computational cost associated with predicting the The nonlinear substructure workflow of reduction, training, and calibration is accomplished via * The mathematics developed for constitutive plasticity can be extended to apply
response of a body by eliminating non-essential degrees of freedom (DOF) [1]. generation of high-fidelity FEA data and subsequent calibration performed via optimization. to higher-dimensional structural bodies.

General nonlinear responses involving complex structures can be predicted by

Step 1: REduACt'on and substructure model formulation the aforementioned framework at a fraction of the computational cost of
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05 Evolution equations (found via calibration) * Integrate the nonlinear substructure process to predict the response of multiple
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(1) but capture response of VI AF * Perform multiscale optimization considering heterogeneous configurations and

entire body. multiple different types of unit cell geometries.

Nonlinear initiation function
f=f(F) - f(a) Full-fidelity FEA: ~50K elements Substructure FEA: 9 elements
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Notional depiction of substructure analysis, in which a meshed structure is ii3
reduced from 82 degrees of freedom to a 6 degree of freedom substructure.

Objective: Step 2: Generation of training and testing data via Latin Hypercube Sampling

Leveraging the mathematical framework developed for constitutive plasticity, develop
a scheme to account for general nonlinear structural responses of arbitrary order [2]. | ' >< quivalent Equivalent plastic strain contours of
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. Comparison between traditional full-fidelity FEA and the substructure analog for a

. . i . S 3-by-3 array of lattice structures. Substructures could provide immense speedup
2 Step 3: Substructure calibration via hybrid optimization by only requiring 9 functional evaluations per loading increment, compared to the
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| . 1e5 . 1=5 , 1e5 , 1e5 | == Substructure prediction 50,000 functional evaluations required in traditional FEA.
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