


Microwave Sintering of a Lunar Soil Simulant: Effects of Sintering Conditions on Microstructure Evolution and Micromechanical Properties

Texas A&M Engineering **Experiment Station**

¹Shayan Gholami, ²Xiang Zhang, ²Bai Cui, ¹Yong-Rak Kim, ³Young-Jae Kim, ³Hyu Shin, ³Janggeun Lee

¹Texas A&M University, ²University of Nebraska-Lincoln, ³Korea Institute of Civil Engineering and Building Technology

Specimen ID	Sintering Temperature (°C)	Dwell Time (min)	Heating Rate (°C/min)
MS1	1075	10	30
MS2	1075	5	25
MS3	1075	20	20
MS4	1100	20	30
MS5	1100	10	25
MS6	1100	5	20
MS7	1125	5	30
MS8	1125	20	25
MS9	1125	10	20

Results

- Microwave sintering was not effective up to 1050 °C, and rigid samples could only be fabricated at higher temperatures. Heating rates higher than 30 °C/min induced non-uniform heating and thermal gradient.
- The Taguchi design method was efficient and successful to examine the effects and sensitivity of testing parameters where a L9 orthogonal array was selected and signal to noise ratios per each level of each factor was determined. Sintering temperature was the dominant factor.
- TEM-EDS analysis determined that silicon, aluminum, and calcium were dispersed in entire sample while iron and magnesium were dispersed only in some components. The following phase transformation was introduced:

 $(Ca,Na)(Si,Al)_4O_8 + (Fe,Mg,Ca)SiO_3 \rightarrow Ca(Mg,Fe,Al)(Si,Al)_2O_6$ + $NaAISi_2O_6$ + SiO_2

Chemical and micro-mechanical studies demonstrated three major peaks of elastic modulus which were correlated with three mineral phases: Soidan Anorthite with higher volume fraction (>70%) and lower elastic modulus (50-100 GPa), Augite and Iron Titanium Oxide with lower volume fraction and higher elastic modulus (>100 GPa). Higher concentration of Iron and Titanium Oxide resulted into stiffer micro-components.

Findings

- Among the three microwave sintering variables considered in this study, sintering temperature was the dominant factor determining final stiffness and porosity reduction during the MS process.
- The sintering conditions affected the overall physical properties. However, stiffness of each micro-component did not change significantly.
- The collective results indicate that microwave sintering could densify the lunar regolith simulant to fabricate a structural component and could be identified as a potentially viable ISRU method.

TEXAS A&M UNIVERSITY Engineering