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1.Key points

• Simple tool to produce estimates of Discharge 

• Landsat widths can easily be extracted and converted into 

discharge estimates

• Characterization of discharge uncertainty allows for remote 

sensing measurements to be used for data assimilation 
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4. Methods. 
1. Acquire Landsat 5, 7, and 8 scenes for each river reach (Fig. 1a). 

2. Apply the Dynamic Surface Water Extent (DSWE)[18] water 

classification algorithm to raw scenes (Fig. 1b).

3. Create a binary mask of river and non-river pixels using a cumulative 

cost function (Fig. 1c). 

4. Intersect Global River Widths from Landsat (GRWL)[19] buffer with a 

2 km buffer around point of interest (Fig. 1d).  

5. Calculate the effective river width for each classified image. 

6. Join same-day Landsat widths (1984-2013) and GRADES discharge 

estimates to produce a rating curve.

7. Use the rating curve to produce discharge estimates from 1984-2020 

for each location. 

Figure 1. Steps followed to create a river mask for effective width measurement. The 
black centerline on all images in the GRWL dataset and the red point is the example 
discharge estimation location. a: Two-km buffer around the location of interest (red 
point). b: DSWE classified image. c: Remove non-river water pixels. d: Blue region is the 
intersecting geometry between the 2-km buffer and a buffer around the GRWL 
centerline. e: The region used to determine river width. f: Paired same-day RODEO 
widths and modelled discharge (red points). g: Rating curve (black line) developed from 
pairing quantile values of width and discharge. h: Estimated error is calculated as the 
difference from modelled discharge and RODEO discharge for each paired width (e). 

3. Data Products
We use Landsat 5, 7, and 8 imagery to calculate river widths and 

pair these widths with same-day discharge estimates from the Global 

Reach Level A-priori Discharge Estimates for SWOT (GRADES)[16]. 

GRADES is a global hydrologic dataset that contains daily discharge 

estimates at the reach scale from 1979-2014. By joining these two 

datasets, we create simple river width-discharge rating curves to 

efficiently estimate discharge across the Lower Mississippi Basin. This 

was selected for testing due to the large amount of validation data 

available. 

Figure 2. Mean annual discharge of the 242 USGS and GRDC gauges 
used in validation.
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2. Why estimate discharge from Landsat? 
Traditionally, river discharge has been measured using river 

gauges[1]. Due to the global decrease in publicly available gauge data 

over the last several decades, alternative approaches should be 

explored for monitoring river discharge[2]. Satellite remote sensing can 

help to fill this knowledge gap due to the temporally and spatially 

consistent sampling of rivers globally[3–5]. While there has been 

extensive development in this field over the last decade, most 

techniques are limited by spatial extent due to computational 

requirements[6–12] or by spatial resolution[13–15]. By leveraging the 

multidecadal archive of Landsat with global discharge estimates, we 

provide a Google Earth Engine (GEE) tool to make efficient and simple 

discharge estimates by anyone with access to GEE. 

5. GEE Application
https://rriggs.users.earthengine.app/view/rodeo

6. Discharge  validation
Landsat derived discharges were validated using 242 USGS and 

GRDC gauges across North America. The validation period is from 

2014-2020 due to all Landsat data from 1984-2013 being used to 

develop the rating curves. 

Figure 6. Boxplots displaying results for various gauge filters. The text above the black 
horizontal lines for each panel represents the median. a: R values for filters 1, 2, and 3, n is the 
number of gauges in each filter. b: R values for filter 3 gauges across various river width 
groupings, n is the number of gauges in each filter. c: The NRMSE, rBias, and RRMSE for gauge 
filters 1, 2, and 3. d: NRMSE, rBias, and RRMSE for various width groupings. 

Figure 3. Sample USGS gauge location along the Mississippi River. Part A displays the paired GRADES-Landsat data used to create the rating curve along with Landsat 

discharge estimates from this rating curve. Part B displays a hydrograph of in situ data (gray) with the Landsat derived discharge estimates plotted in blue. Part C displays 

the comparison of same day in situ discharge measurements vs Landsat discharge estimates.

Figure 5. RODEO Google Earth Engine application running on 
the Mississippi River, Memphis, Tennessee. The GRWL centerline 
(yellow line) and buffer (dark gray polygon) are shown on the 
map. The parameters for the application are shown on the top 
right panel. The RODEO rating curve is shown on the next panel, 
followed by the width time series and discharge time series. The 
raw estimated errors are shown in the bottom left panel. 

Figure 4. Width validation. 


