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� Neural progenitor cell (NPC) transplantation is a promising
therapeutic strategy following spinal cord injury (SCI).

� NPCs transplanted into the injured spinal cord undergo
specification through normal developmental processes, and
give rise to diverse neuronal subtypes (Fig. 1A) & glia.

� Studies suggest that the graft cell identity may significantly
affect circuit-appropriate integration and recovery of function,
highlighting the importance of graft composition.

� Spinal cord neurogenesis occurs over multiple days with
different progenitor classes exhibiting different temporal
patterns (Fig.1B).

� In this study, we assessed the effects of developmental
restriction on NPC graft composition.
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Background

� Donor neural progenitor cells (NPCs) were isolated from
GFP+ mouse embryonic spinal cords at time points E11.5,
E12.5, and E13.5.

� NPCs were transplanted into wild type host mice following a
C4 dorsal column lesion (1 million cells per subject).

� Four weeks post-transplantation, tissue was collected and
sectioned at 20μm for immunohistochemical analysis.

� Graft composition was characterized using cell markers
including NeuN, Sox9, Lbx1, Tlx3, Calbindin, and ChAT.

� Quantification was performed with ImageJ and an automated
cell counting plugin created in our lab (Chen et al., in prep).

� Our data suggests that the developmental stage during NPC
harvesting may significantly affect graft composition.

� The E12.5 NPCs, considered the “golden standard” in cell
transplantation studies, showed a tendency for smaller graft
volume, and lower neuron and astrocyte numbers.

� We are currently characterizing the effects of developmental
restriction on “phenotypic identity.” Preliminary data suggests
that earlier-stage grafts show a more ventral/motor profile,
while later-stage grafts show a more dorsal/sensory profile.

� Follow-up experiments will be necessary to evaluate how
different graft-derived neuron subtypes mediate graft/host
integration and recovery of function.

� Importantly, these experiments could inform engineering of
improved and optimized grafts for translation into the clinic.

Figure 2. NPC transplantation into the lesion site in a mouse model of
spinal cord injury. Image adapted from Dulin et al., 2018 [2].
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Figure 1. (a) Morphogen gradients in embryonic neural tube lead to
development of distinct neuronal domains in the adult spinal cord; image
adapted from Lai, et al., 2016 [1]. (b) Distribution of BrdU+ cells in embryonic
spinal cord after one pulse of BrdU. Image shows differing areas of proliferating
cells at various embryonic time points; image adapted from Petracca, et al.,
2016 [2].

Figure 3. (a) Image of mouse CNS with GFP+ graft four-weeks post
transplantation at 4X magnification. (b) Composite image of 20 μm sagittal
spinal cord section taken at 10X magnification. (c - f) DAPI, GFP, NeuN, and
Sox9 are shown in their respective channels. (g) Quantification of graft
volume (mm3) from NPCs harvested at embryonic dates E11.5, E12.5, and
E13.5
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Figure 4. (a) Image of 20 μm sagittal section of the spinal cord showing GFP+ graft in green and NeuN in red. (b)
Close up of area delineated by the square in A. (c) NeuN+ cells in the graft identified by our macro. (d) NeuN+
mask overlaid on the NeuN+ channel only. (e) Total NeuN+ cell counts in all sections. (f) NeuN+ cell density
derived by dividing the total number of NeuN+ cells by the total graft volume.
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Figure 5. (a) Image of 20 μm sagittal section of the spinal cord showing GFP+ graft in green and Sox9 in red. (b)
Graft-derived astrocytes identified by our macro, showing colocalization of GFP and Sox9. Arrow points to one of
these cells present outside of the graft. (c) Quantification of total graft-derived astrocytes (d) Quantification of graft-
derived astrocytes within the boundary of the graft. (e) Ratio of graft-derived neurons to astrocytes across
embryonic time points. (f) Quantification of graft-derived astrocytes found outside of the graft and in the host tissue.
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Figure 6. (a-d) Images show spinal expression of Tlx3, Lbx1, calbindin,
and choline acetyltransferase in transverse sections at postnatal day 21
and (e-h) in sagittal sections at four weeks following NPC transplantation.
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