

Using a General Mathematical Model to Quantify the Fontan Paradox of **Elevated Central Venous Pressure and Diminished Cardiac Output**

Eunhye Jeon, Cayla M. Jenkins, Rebecca S. Philip, Gracelyn I. King, Spencer A. Keith, Christopher M. Quick Physiology & Pharmacology Department, Michael E. DeBakey Institute, Texas A&M University

Introduction

Fontan procedure and its paradox

- Palliates patients with single ventricle (SV) physiology • Only one functioning ventricle for heart
- Connects the venous return and pulmonary circulation (Figure 1)
 - Low Cardiac output (CO) = Low tissue perfusion
- High Central venous pressure (CVP) = High organ congestion However, common interventions either raise or lower CO and CVP simultaneously
 - This is called the "Fontan Paradox" ¹
 - Clinical interventions not effective in preventing this paradox.²

Limitations for current Fontan procedural models

- Computational models ³
 - Requires assumption of specified numerical values
 - Highly individualized; Cannot be applied to general population
- Animal models
 - Difficult to manipulate the mechanical properties affecting CVP and CO
- Human population is too fragile to experiment on

Benefits of Algebraic Formulas

- Numerical parameter values are not required
- Elegance to characterize different variations of Fontan physiology
- Ease of understanding

Purpose: to derive algebraic formulas for CVP and CO to enhance the understanding of Fontan Paradox

Methods

Minimal Closed-loop Heart Model

Figure 1: Minimal Closed-loop model of normal heart (top) and single ventricle heart after Fontan procedure (bottom). Arrows represent the blood flow. Systemic circulation is highlighted by the red rectangle, and the **pulmonary circulation** is highlighted by the blue rectangle. VR and pulmonary circulation are connected serially. Qp: pulmonary flow; VR: venous return; other symbols are defined in **Table 2**.

Characterizing the Cardiac Ventricle

Volume

Figure 2: Standard description of ventricular pressure-volume loop. Endsystolic pressure-volume relationship (ESPVR) and end-diastolic pressurevolume relationship (EDPVR) are illustrated. Although EDPVR is understood to be non-linear, it is generally linearized to maintain simplicity (dashed line). Although loading the ventricle with different volumes alters pressure-volume loops, but ESPVR and EDPVR remain constant.

Standard Model Equations

Table 1	: M	odel	Eq
---------	------------	------	----

Cardiac Ventricle	$CO = HR(V_{ed} - V_{es})$	(1)
	$P_{sa} \approx E_{max}(V_{es} - V_{oes})$	(2)
	$P_{pv} \approx E_{min}(V_{ed} - V_{oed})$	(3)
Peripheral	$CO = \frac{P_{sa} - P_{sv}}{R_s}$	(4)
Resistance	$CO = \frac{P_{sv} - P_{pv}}{R_p}$	(5)

*Mean arterial pressure is regulated by renal control of blood volume. Equations 1-3 derived from **Figure 2**. 2. Equations 4-5 derived from Figure 1.

Table 2: Parameters

	со	Cardiac output	P _{es}	Ventricular end- systolic pressure	
	Δνο	Unstressed stroke volume; V _{oes} -V _{oed}	SV	Single ventricle	
	E _{max}	Maximum end- systolic elasticity	V _{ed}	End-diastolic volume	
Ventricle	E _{min}	Minimum end-diastolic elasticity	V _{es}	End-systolic volume	
	HR	Heart rate	V _{oed}	End-diastolic unstressed volume	
	P _{ed}	Ventricular end-diastolic pressure	V _{oes}	End-systolic unstressed volume	
	P _{sa}	Total systemic arterial pressure, includes Mean Arterial Pressure (MAP)			
Systemic Circulation	P _{sv}	Total systemic venous pressure, includes Central Venous Pressure (CVP) Total systemic resistance			
	R _s				
	R _p	Total pulmonary resistance Total pulmonary arterial pressure Total pulmonary venous pressure			
Pulmonary	P _{pa}				
Circulation	P _{pv}				

quations

Results & Discussion Algebraic Formulas for CO and CVP (1)CVP is expressed as P_{sv} Composed of 5 sets of parameters: Theoretical stroke volume at zero ventricular pressure 2. Efficiency of heart-vascular interaction Relative cardiac contractility Theoretical CO at zero CVP 5. Relative pulmonary resistance Solving the Paradox – pulmonary resistance Ideal interventions increases CO and decreases CVP Negative correlation Altering some parameters eliminate the Paradox: $\Delta V_{o}, E_{min}, E_{max}, HR, and R_{o}$ Two most common parameters lead to the paradox: • R_s and P_{sa} (m $R_p (mmHg/L)$ $p_{sa} (mmHg)$ $R_s (mmHg/L)$ Figure 3: Change in CO (blue) and CVP (purple) by increase in R_p (left), **R_s (middle)**, and P_{sa} (right). The scales and units for each y-axis are different; only the direction of relationships is notable from this figure. Manipulating ventricular parameters cannot be the primary solution ² Also, the ventricle is already performing near its max capacity in Fontan circulation

(L/min)

CO

Circumventing the Paradox

- Most convenient clinical interventions:
- and *P_{sa}* are altered to elevate CO

Conclusion

- sufficient for our purposes

1. De Leval, M. R. (2005). The Fontan circulation: a challenge to William Harvey?. Nature clinical practice Cardiovascular medicine, 2(4), 202-208. 2. Gewillig, M., Brown, S. C., van de Bruaene, A., & Rychik, J. (2020). Providing a framework of principles for

conceptualising the Fontan circulation. Acta Paediatrica, 109(4), 651-658. 3. Kutty, S., Jacobs, M. L., Thompson, W. R., & Danford, D. A. (2020). Fontan Circulation of the Next Generation: Why It's Necessary, What it Might Look Like. Journal of the American Heart Association, 9(1), e013691.

Therefore, R_p is the only parameter that may reverse the paradox ^{1, 2, 3}

altering blood volume (P_{sa}) or systemic resistance (R_s)

Analyzed the sensitivity of CO and CVP from each parameter when R_s

Patients with stiff ventricle (**high** E_{min}) or high pulmonary resistance (**high** R_n) are less likely to suffer from the paradox

• They have the most cardiac and pulmonary dysfunction

Algebraic formulas explicitly relate parameters to CO and CVP to provide universal insight to Fontan physiology and Fontan paradox

Nonlinear pressure-volume relationships were assumed to be linear, but

Limited to see the trend and the relationship between parameters Model suggests altering pulmonary resistance merits further study

References