Circadian Clock Control of tRNA Synthetases in Neurospora crassa

Emily Chapa, Kathrina D. Castillo, and Deborah Bell-Pedersen Department of Biology, Texas A&M University

BACKGROUND

The Circadian Clock

The *N. crassa* core oscillator is known to control transcription, leading to rhythms in mRNA, but the clock's role in translation is understudied.

Rhythmic control of P-eIF2 α

Our lab discovered that the *N. crassa* controls rhythmic mRNA translation through the regulation of the eIF2 α kinase CPC-3, which phosphorylates and inactivates eIF2 α . We showed that clock control of CPC-3 activity requires the rhythmic accumulation of valyl-tRNA synthetase (ValRS) (Karki et al., 2020).

HYPOTHESIS

We hypothesized that clock control of amino acid tRNA synthetases (aaRS's) drives rhythmic mRNA translation, as well as rhythmic growth and development in N. crassa.

METHODS

RESULTS

AspRS, GluRS, and PheRS, are clock-controlled based on circadian genomic datasets

Using RNA-seq and ribosome profiling (ribo-seq) datasets, identify aaRS's which are clockcontrolled in both fungi and mammals.

Create luciferase translational fusions to the aaRS's (aaRS::LUC) via 3-way fusion PCR. Transform construct into WT *N. crassa* cells.

Examine rhythmic luciferase activity in WT and arrhythmic clock mutant Δfrq cells.

PheRS::LUC translational reporter fusion is rhythmic in DD, peaking during the subjective night

- AspRS, GluRS and PheRS.

and development.

Acknowledgments:

Luciferase activity from PheRS::LUC in WT cells, grown in DD over 4 d (Hrs DD). The average bioluminescence signal is plotted (mean ± SEM, n=12). PheRS::LUC in WT cells is rhythmic as indicated by a better fit to a wave (p<0.05, dotted black lines).

CONCLUSIONS

1. We have identified three clock-controlled aaRS from genomic datasets namely,

2. We have successfully created luciferase translational fusions to AspRS, GluRS and PheRS to examine protein levels *in vivo* over several days.

3. PheRS protein rhythms are rhythmic in WT, validating the genomics data.

FUTURE DIRECTIONS

1. Examine rhythms of AspRS::LUC and GluRS::LUC in WT cells; and of AspRS::LUC, GluRS::LUC and PheRS::LUC in Δfrq cells.

2. If confirmed to be clock-controlled, the rhythmic expression of each will be abolished to determine how loss of rhythmicity alters rhythmic translation, growth,

