Type of STEM Field Moderates Gender Differences in Implicit and Explicit Identity Balance
Rachelle M. Pedersen, Michael R. Avlonitis, Nyima I. Sanneh, Paul. R. Hernandez
Texas A&M University

INTRODUCTION
➢ Underrepresentation of women in STEM
 ○ Certain fields have lower representation (i.e. Engineering/Computer Science)
 ○ Persistent stereotypes influence belonging and identification
➢ Balanced Identity Theory:
 ○ Those who achieve balance across central personal-professional identities are more likely persist in their academic and career pursuits

RESEARCH QUESTIONS
1. To what extent is participant major correlated with explicit and implicit balanced identity scores?
2. To what degree do these relationships vary as a function of participant gender?

METHOD
➢ Participants (N = 1,446)
 ○ Juniors/Seniors from 3 California State University schools
 ○ Science (73.3%), Engineering and Computer Science (26.7%)
 ○ Women (58.9%), Men (41.1%)
 ○ *Hispanic (58.9%), White (32.9%)

➢ Procedures
 ○ Participants completed 3 Implicit Association Tests (IAT) and survey items at the start of each semester (data from Wave 3)

RESULTS
 ➢ Implicit Gender by Major Interaction (non-significant)
 ○ Science majors had higher implicit balance scores than Eng/CS (β=0.41 p<.01, β=.29)
 ○ Females had lower implicit balance scores than males (β=-0.23, p<.05, β=-.18)

 ➢ Explicit Balance by Gender and Major

DISCUSSION
Differences in implicit and explicit identity balance suggest the importance of:
➢ Measures
 ○ Using both implicit and explicit measures to capture different associations
➢ Potential Covariates
 ○ Teasing out gender-specific nuances within various STEM fields
➢ Theoretical Validation
 ○ Continued efforts to utilize balance score measures for predictive outcomes

ADDITIONAL RESULTS
Table 1. Summary of Descriptive Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>M</th>
<th>SD</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males (n=66)</td>
<td></td>
<td></td>
<td>Females (n=86)</td>
<td></td>
</tr>
<tr>
<td>Explicit Gender Identity</td>
<td>3.34</td>
<td>1.054</td>
<td>3.91</td>
<td>1.03</td>
</tr>
<tr>
<td>Stereotype Endorsement</td>
<td>3.87</td>
<td>2.26</td>
<td>5.82</td>
<td>1.68</td>
</tr>
<tr>
<td>STEM Identity</td>
<td>3.84</td>
<td>0.7</td>
<td>4.06</td>
<td>0.72</td>
</tr>
<tr>
<td>Standardized Balance</td>
<td>0.19</td>
<td>0.79</td>
<td>0.48</td>
<td>0.71</td>
</tr>
<tr>
<td>Implicit Gender IAT</td>
<td>0.8</td>
<td>0.52</td>
<td>0.57</td>
<td>0.55</td>
</tr>
<tr>
<td>Stereotype Endorsement IAT</td>
<td>0.52</td>
<td>0.55</td>
<td>0.34</td>
<td>0.56</td>
</tr>
<tr>
<td>STEM Identity IAT</td>
<td>0.57</td>
<td>0.56</td>
<td>0.56</td>
<td>0.48</td>
</tr>
<tr>
<td>Standardized Balance</td>
<td>0.42</td>
<td>0.58</td>
<td>0.32</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Table 1. Summary of 2-Step Sequential Regression Model F-Tests

<table>
<thead>
<tr>
<th>Step</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>R²</th>
<th>ΔF</th>
<th>Δdf</th>
<th>ΔR²</th>
<th>ΔF</th>
<th>Δdf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implicit Balance Scores</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.61</td>
<td>2</td>
<td>2.30</td>
<td>6.21***</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.17</td>
<td>3</td>
<td>1.72</td>
<td>4.66**</td>
<td>0.09</td>
<td>1.51</td>
<td>1</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explicit Balance Scores</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.04</td>
<td>2</td>
<td>1.52</td>
<td>2.74*</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13.30</td>
<td>3</td>
<td>4.43</td>
<td>9.10***</td>
<td>0.16</td>
<td>21.06***</td>
<td>1</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES
1. Chemers et al., 2011
2. Denney et al., 2018
3. Greenwald et al., 2002
4. Greenwald et al., 1998
5. Luhtanen et al., 1992
6. Schmader et al., 2004

ACKNOWLEDGEMENTS
Schultz, P. R., (PI), Weidock, A. (Co-PI), & Hernandez, P. R. (Co-PI). Developing a Measure of STEM Identity and Balance (1745929), funded by the National Science Foundation for $300,000. (2017-2020).