

Type of STEM Field Moderates Gender Differences in Implicit and Explicit Identity Balance Rachelle M. Pedersen, Michael R. Avlonitis, Nyima I. Sanneh, Paul. R. Hernandez

Texas A&M University

INTRODUCTION

- ➤ Underrepresentation of women in STEM
- Certain fields have lower representation (i.e. Engineering/Computer Science)
- Persistent stereotypes influence belonging and identification²
- > Balanced Identity Theory⁴:
- Those who achieve balance across central personal-professional identities are more likely persist in their academic and career pursuits

RESEARCH QUESTIONS

- 1. To what extent is participant major correlated with explicit and implicit balanced identity scores?
- 2. To what degree do these relationships vary as a function of participant gender?

METHOD

- \succ Participants (N = 146)
- Juniors/Seniors from 3 California State University schools
- Science (73.3%), Engineering and Computer Science (26.7%)
- Women (58.9%), Men (41.1%)
- *Hispanic (58.9%), White (32.9%)

\succ Procedures

• Participants completed 3 Implicit Association Tests (IAT)³ and survey items at the start of each semester (data from Wave 3)

➤ Measures

Implicit Measures: Gender IAT (Me = My Gender) STEM IAT (Me = STEM) Gender-STEM IAT (STEM = My Gender)

Explicit Measures:

Gender ID⁵ (e.g. "Being a woman is an important part of my self-image") STEM ID¹ (e.g. "Being a scientist is an important reflection of who I am") Stereotype Endorsement⁶ (e.g. "In general, men may be better than women at engineering") *Black - 3.42%, Asian - 2.05%, Hawaiian/Pacific - 0%, Native - 0.68%, Other - 2.05%

> Implicit Gender by Major Interaction (non-significant)

- Science majors had higher implicit balance scores than Eng/CS $(b_1=0.41 \text{ p} < .01, \beta = .29)$
- Females had lower implicit balance scores than males $(b_2 = -0.23, p < .05, \beta = -0.18)$

> Explicit Gender by Major Interaction

- \circ (b₂=1.30, p<.001, β =0.86)
- Males in EngCS had higher explicit balance than those in Science
- Females in Eng/CS had loewe explicit balance than those in Science

DISCUSSION

Differences in implicit and explicit identity balance suggest the importance of:

- \succ Measures
 - Using both implicit and explicit measures to capture different associations
- > Potential Covariates
 - Teasing out gender-specific nuances within various STEM fields
- > Theoretical Validation
 - Continued efforts to utilize balance score measures for predictive outcomes

ADDITIONAL RESULTS

Table 1. Summary of Descriptive Statistics

		Males (n=60)		Females (n=86)	
Variable		М	SD	М	SD
Explicit					
	Gender Identity	3.34	1.034	3.91	1.03
	Stereotype Endorsement	3.87	2.26	5.82	1.68
	STEM Identity	3.84	0.7	4.06	0.72
	Standardized Balance	0.19	0.79	0.48	0.71
Implicit					
	Gender Identity IAT	0.8	0.52	0.57	0.55
	Stereotype Endorsement IAT	0.52	0.55	0.34	0.56
	STEM Identity IAT	0.57	0.56	0.56	0.48
	Standardized Balance	0.42	0.58	0.32	0.67

Table 2. Summary of 2-Step Sequential Regression Model F-Tests

Step	SS	df	MS	F	R^2	ΔF	∆df	ΔR^2		
		Implicit Balance Scores								
1	4.61	2	2.30	6.21**	.08					
2	5.17	3	1.72	4.66**	.09	1.51	1	.01		
		Explicit Balance Scores								
1	3.04	2	1.52	2.74^{\dagger}	.04					
2	13.30	3	4.43	9.10***	.16	21.06***	1	.12		

REFERENCES

¹Chemers et al., 201. ²Dennehy et al., 2018 ³Greenwald et al., 2002 ⁴Greenwald et al., 1998 ⁵Luhtanen et al., 1992 ⁶Schmader et al., 2004

ACKNOWLEDGEMENTS

Schultz, P. W. (PI), Woodcock, A. (Co-PI), & Hernandez, P. R. (Co-PI). Developing a Measure of STEM Identity and Balance (#1745929), funded by the National Science Foundation for \$300,000 (2017-2020).

